
ORIGINAL ARTICLE

 J Pur Appl Math Vol 2 No 3 December 2018 5

Department Of Mathematics, Raja NL Khan Women’s College, West Bengal, India.

Correspondence: Mondal S, Department Of Mathematics, Raja NL Khan Women’s College, West Bengal, India, e-mail: sm5971@rediffmail.com
Received: November 19, 2018, Accepted: November 28, 2018, Published: December 07, 2018

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://
creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is
properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com

A sequential and parallel algorithm for disjoint cliques problem on
interval graphs

Sukumar Mondal

Mondal S. A sequential and parallel algorithm for disjoint cliques problem
on interval graphs. J Pur Appl Math. 2018;2(3): 05-7.

ABSTRACT

Using DAG approach,A sequential algorithm is presented to solve disjoint
cliques problem on interval graph G which takes O(n^2) time where n is
the number of vertices of the graph. For the same problem a O(log2n) time
parallel algorithm is presented which takes ()3 3/20(log log / log)n n n processors on an

EREW PRAM model. Also, on a CREW model it takes O(logn) time with
O(n^(3+ε)),ε>0 processors..

Key Words: Design of algorithms; Analysis of algorithms; Cliques; Disjoint cliques;
Interval graphs.

AMS Mathematics Subject Classification (2010): 05C62, 05C78, 05C85, 68Q22,
68Q25, 68R10

An undirected graph G=(V,E) is an interval graph if the vertex set V can
be put into one-to-one correspondence with a set I of intervals on the

real line such that two vertices are adjacent in G iff their corresponding
intervals in I have non-empty intersection. The set I is called an interval
representation of the graph G and G is referred to as the intersection graph
of I [1].

Interval graphs arise in the process of modeling real life situations,
specially involving time dependencies or other restrictions that are linear in
nature [2-7]. This graph models are convenient for analysis of electric circuits,
VLSI design and layout routing process, scheduling, design of complex
data structures, archeology, molecular biology, psychology, scheduling
transportation etc. Recently Interval graphs have found applications in
protein sequencing [8], macro substitution [9], circuit routing [10], file
organization and job scheduling [11], resister allocation, routing of two
points nets [12] and many others.

For a simple connected graph G=(V,E), a subset of V is said to be a clique
in G if every pair of vertices of this subset is connected by an edge of E.
A maximal clique is a clique to which no further vertex of the graph can
be can be added so that it remains clique. A maximum clique is maximal
clique cardinality. The cardinality of the maximum clique is called the clique
number. If k be the total number of maximal cliques of the graph G and
C={C_1,C_2,… C_k} be the set of all maximal cliques of the graph, then a
subset D of C ()D C⊆ is said to be a ‘set of pairwise disjoint cliques if every
pair of cliques in D is disjoint.

Survey

For an arbitrary undirected graphs, disjoint union of cliques is easily seen
to be NP-complete. As the disjoint union of the cliques problem is a ‘hard’
problem, so, we can explore its restrictions to special class of graphs and
we hope to detect computationally better tractable cases. The motivation
for this approach comes from the NP-completeness table of Johnson [13],
where the complexity of ten different graph problems restricted to a series of
graph classes is given. Two problems in the table of Johnson are the above
mentioned ‘clique’ and ‘partition into cliques’ problem.

The problem ‘disjoint union of cliques’ was analyzed first by Frank
[14]. He considered comparability graphs and its complement graphs (co-
comparability graphs) and given an algorithm for both graph classes with
complexity O(a b n2),where a is the cardinality of a maximum clique and b is
the cardinality of a maximum independent set. Gavril et al. [15] proposed
a slightly better algorithm which needs O (Dn2) time steps for comparibility
graphs and O (n3+ b n2 log n) for co-comparability graphs. In [16], for subclass
like the interval graphs, bipartite graphs and co graphs with n vertices, Jansen
et al. have designed an algorithm for finding D paiwise disjoint union cliques

in O(Dn2), O(m√n) and O(n2) time respectively.

In this paper, a sequential algorithm and a parallel algorithm are presented
to find a set of pairwise disjoint cliques in the interval graph with maximum
overall number of vertices. The time complexity of the proposed sequential
algorithm is O(n2) whereas the parallel algorithm takes O(log2n) time with

()3 3/20(log log / log)n n n processors on an EREW PRAM model and on a CREW
model it takes O(log n) time with O(n3+ε),ε>0 processors, where n is the
number of vertices of the graph.

Data Structure and Preliminaries

Let I= {I
1
, I

2
,… I

n
}, be the interval representation of the interval graph

G= (V,E), where a
r
 is the left endpoint and b

r
 is the right endpoint of the

interval I
r
=[a

r
,b

r
] for all r=1,2,… n. Without loss of generality, we assume

the following:

1.	 the intervals in I are indexed by increasing right endpoint, i.e.,
b_1<b_2<⋯<b_n,

2.	 the intervals are closed, i.e., contains both of its endpoints and that
no two intervals share a common endpoint,

3.	 vertices of the interval graph and the intervals on the real line are
one and the same thing,

4.	 the interval graph G is connected, and the list of sorted end points
is given.

Figure 1) An interval graph and its interval representation

Considering the location of 2n endpoints of the n intervals on the real
line in increasing order and the array e= {e(1),e(2),. . . , e(2n)} is formed. For
each element e (i) of e, two fields e (i).ver and e (i).type are defined as follows:

e(i).ver=k, if e(i) is the end point of the interval I
k
.

e(i).type={a, if the end point e (i) is left end point

 ={b, if the end point e (i) is right end point.

Mondal.

 J Pur Appl Math Vol 2 No 3 December 20186

Then, we define a new field e (i).max to the array e as

e (i).max=e(i).ver for i=1.

()
(4).max, (1). ().

.
(). , (1). (). .

e i if e i ver e i ver
e i max

e i ver if e i ver e i ver
− − ≥

=  − <
 Thus, the fields e(i).max

computes the maximum vertex between the end points e(1) and e(i).

For the graph of Figure 1, the array e is shown in the Table 1.

Lemma-1

All maximal cliques of an interval graph can be computed sequentially in O(n+γ)
time, where γ is the output size and in parallel in 0(log)n n

p
γ+

+

time using p processors
on an EREW PRAM [17].

One more important characterization of the interval graph with respect to
cliques is given by Gilmore and Hoffman [18]. It is stated as follows:

Lemma-2

A graph G is an interval graph if and only if the maximal cliques of G can be
linearly ordered in such a way that for every vertex v of G, the maximal cliques
containing v occur consecutively [18].

Using Lemma-1, we can determine all maximal cliques. Let the total
number of maximal cliques thus found be α. As the graph G is an interval
graph, these α maximal cliques can be ordered by Lemma-2. Let the set
of these ordered maximal cliques be {C

1
, C

2
,…Cα}. We also consider two

fictitious cliques C
0
and C

(α+1)
 and take them as null set. Thus the ordered

maximal cliques becomes {Cα,C1
,C

2
,… Cα, Cα+1

}.

Another array, denoted by max (C
i
), is defined as

 max (C
i
) =max{v: v∈C_i}.

This array gives the maximum vertex that the clique C
i
 contains.

From Lemma-2, it follows that if u∈C
i
 and u∈C

k
 where I ≤ k, then u∈C

_j

for all I ≤ j ≤ k. If p(u) is the largest subscript of the maximal cliques in which
u belongs, then we call the clique C

p(u)
 as end clique of u, i.e., if p(u)=max∈{j:

u∈C
j
} then the end clique of u is C

p(u)
. We note that p(u) forms an array for all

u∈V, and also we note that if j>p(u) then u ∉C
j
.

Next, we define another important array First Disjoint (C
i
), i=1,2,…,α is

defined as follows:

FirstDisjoint (C
i
) =p(max(C

i
))+1.

From this definition and the ordering of maximal cliques done by
Lemma-2, it follows that if j=FirstDisjoint (C

i
) then all the cliques C

j
,C

(j+1)
,…,Cα

are disjoint with C
i
 and C

j
 is the first disjoint clique of the clique C

i
.

For any two consecutive cliques we have the following lemma.

Lemma-3

Any two consecutive cliques 𝐶𝑖 and 𝐶𝑖+1
 are non-disjoint cliques in 𝐺.

Proof: If possible let 𝐶𝑗 and 𝐶𝑗+1
 are disjoint cliques in 𝐺. Then from the

ordering of maximal cliques, it is clear that 𝐶𝑗 is disjoint with all cliques
𝐶𝑗+1

, 𝐶𝑗+2
, … , 𝐶𝛼. From Lemma-2, we have

for any 𝑖 ≤ 𝑗, if 𝑢 ∈ 𝐶𝑖 then the end clique of 𝑢 cannot be 𝐶𝑘 where 𝑘 ≥ 𝑗 +
1, since in that case 𝑢 must belongs to both 𝐶𝑗 and 𝐶𝑗+1

 contradicting the fact
that 𝐶𝑗 and 𝐶𝑗+1

 are disjoint. As it

is true for any 𝑢 ∈ 𝐶𝑖, we have 𝐶𝑖is disjoint with 𝐶𝑘 for any 𝑘 ≥ 𝑗 + 1.
Hence, any one among

𝐶
1
, 𝐶

2
, … 𝐶𝑗 is disjoint with any 𝐶𝑗+1

, 𝐶𝑗+2
, … , 𝐶𝛼. This means the graph 𝐺

is disconnected

which is not true. Hence, any two consecutive cliques 𝐶𝑖 and 𝐶𝑖+1
 are non-

disjoint cliques in 𝐺.

This proves the lemma.

The array 𝐹𝑖𝑟𝑠𝑡𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡 plays an important role for construction of the
network 𝑁. An algorithm to compute this array is presented below:

Algorithm FD

Input: The array (𝑖), 𝑖 = 1, 2, … , 2𝑛 for interval graph.

Output: The array 𝐹𝑖𝑟𝑠𝑡𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡.

Step-1: Compute all maximal cliques , 𝑖 = 1, 2,. . . , 𝛼.

Step-2: Compute all 𝑚𝑎𝑥 (

) , 𝑖 = 1, 2, . . . , 𝛼.

Step-3: Compute all (𝑖), 𝑖 = 1, 2, . . . , 𝑛.

Step-4: For all 𝑖 = 1, 2, . . . , 𝛼 calculate

𝐹𝑖𝑟𝑠𝑡𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡 (

) = ((𝐶

)) + 1. end FD

The complexity of Algorithm FD is given blow:

Theorem-1: Algorithm FD can be computed in (𝑛2) time in sequential.

Proof. Step-1 can be computed in (𝑛 + 𝛾) time, where 𝛾 is the sum of
cardinalities of all cliques which is known and to be (𝑛 + 𝑚) time, where 𝑚
is the number of edges of the graph[7]. In step-2, for each 𝑖 = 1, 2,. .. , 𝛼, the
array 𝑚𝑎𝑥 () takes (|𝐶𝑖 |) time, i.e., (𝑛) time. Hence, for all cliques it takes
(𝛼 𝑛) time, i.e., (𝑛2) time as 𝛼 is of (𝑛). Similarly, Step-3 and Step-4 takes
(𝑛2) time. Therefore, overall time complexity of the Algorithm FD is of (𝑛2).
Hence the theorem.

Using the array 𝐹𝑖𝑟𝑠𝑡𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡 anyone can construct the network 𝑁,
called as Directed Acyclic

Graph (DAG).

A Network and its Properties

A Network

A network 𝑁 consists of a finite set of nodes 𝑉𝑁 = {𝐴
0
, 𝐴

1
, … 𝐴𝑚} together

with a set of arcs

𝐸𝑁 of all ordered disjoint pairs (𝐴𝑖,), 𝑗 > 𝑖; 𝑖, 𝑗 = 0, 1, … , 𝑚. The network
𝑁 has also a

special return arc (𝐴𝑚,
 𝐴

0
) from the sink 𝐴𝑚 to the source 𝐴

0
. With each arc

(𝐴𝑖,) ∈ 𝐸𝑁 of the network 𝑁, a non-negative weight 𝑤(𝐴𝑖,𝐴𝑗) is associated. A
path having maximum total weight among all paths from 𝐴0 to 𝐴𝑚 is called
the maximum weight path.

Let 𝑇 be the set of all paths from the source 𝐴
0
to the sink 𝐴𝑚 in 𝑁. Then

𝑇 is a finite set. For any path 𝑃 ∈ 𝑇 let the sum of the weights for the arcs
associated with the path 𝑃 is (𝑃).

The maximum weighted path problem for a network 𝑁 is the problem of
finding maximum weighted path, i.e., it is a problem of finding a path 𝑃∗
from 𝐴

0
 to 𝐴𝑚 in the network 𝑁 for which the total weight is maximum. So,

it is a problem of finding a path 𝑃∗∈ 𝑇 such that

𝑤(𝑃∗) = 𝑚𝑎𝑥{𝑤(𝑃) ∶ 𝑃 ∈ 𝑇}.

Construction of the Network

We now supposed to construct a network 𝑁 so that a maximum weighted
path of it leads to the solution of pairwise disjoint cliques problem in the
interval graph 𝐺 Figure2.

Table 1.

To find the disjoint cliques on interval graphs, we have to first compute all maximal cliques and the time complexity of which given in the following lemma.

 e(i). e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20

ver 2 1 3 1 2 5 3 4 4 7 6 5 6 8 9 10 7 8 9 10

typ a a a b b a b a b a a b b a a a b b b b

ma 2 2 3 3 3 5 5 5 5 7 7 7 7 8 9 10 10 10 10 10

 J Pur Appl Math Vol 2 No 3 August 2018 7

A sequential and parallel algorithm for disjoint cliques problem on interval graphs

Figure 2) The Network N constructed from the graph of Figure 1

The nodes of the network are taken as the set of all maximal cliques 𝑉𝑁 =
{𝐶

0
, 𝐶

1
, … 𝐶𝛼 , 𝐶𝛼+1

} and the set 𝐸𝑁 of arcs is formed by 𝑒 −arcs, 𝑑 −arcs and
special return arc defined respectively as

i) all ordered disjoint pairs (𝐶𝑖 , 𝐶𝑗), 𝑗 > 𝑖, 𝑖, 𝑗 = 0, 1, 2, … 𝛼 + 1;

ii) all ordered non-disjoint pairs (𝐶𝑖−1
, 𝐶𝑖), 𝑖 = 1, 2, … , 𝛼; and

iii) the ordered pair (𝐶𝛼+1
, 𝐶

0
).

As from Lemma-3, the consecutive cliques are always non-disjoint, the
weight of all 𝑑 −arcs are taken zero. The weight of all 𝑒 −arcs are taken as
follows:

i) if the graph 𝐺 is non-weighted then

𝑤(𝐶𝑖 , 𝐶𝑗) = 𝑤(𝐶𝑖) = |𝐶𝑖 |,

i.e., weight of the arc (𝐶𝑖,
) is equal to the cardinality of the clique 𝐶𝑖; and

ii) if the graph 𝐺 is weighted then (,) () ()
i

i j i
u C

w C C w C w u
∈

= = ∑ ,

i.e., weight of the arc (𝐶𝑖,) is equal to the weight of the node 𝐶𝑖 which is
the sum of the weights associated with each vertex of the maximal clique 𝐶𝑖.

In 𝑁, let the total number of paths from the source 𝐶
0
 to the sink 𝐶𝛼+1

be
ℎ, and the set of all such paths be 𝑇 = {𝑃

1
, 𝑃

2
, …, 𝑃ℎ}. Then for any path 𝑃𝜆 ∈

𝑇 we have (,)
() (,)

i j

i j
c c P

w P w C C
λ

λ
∈

= ∑ The maximum weighted path problem is the problem
of finding the path 𝑃∗ ∈ 𝑇 such that (𝑃∗) = {(𝑃) ∶ 𝑃 ∈ 𝑇} = {(𝑃

1
), (𝑃

2
), . , 𝑤(𝑃ℎ)}.

Next, we shall discuss about the total number of nodes and total
computational time.

Lemma-4 The total number of nodes in 𝑁 is 𝛼 + 2 and the total number
of arcs in 𝑁 is of (𝛼2) where 𝛼 < 𝑛.

Proof: From definition and construction of 𝑁 it is clear that the total
number of nodes 𝛼 + 2. The Number of 𝑒 −arcs starting from each node 𝐶𝑖
is at most 𝛼. As there are 𝛼 + 2 nodes in 𝑁 therefore, the total number of
arcs in 𝑁 is of (𝛼2).

Lemma-5

If all the maximal cliques are given then the time taken to construct the
network 𝑁 is of (𝛼2).

Proof : It follows directly from the Lemma-4.

If 𝐷 be the set of maximal mutually disjoint cliques of the graph 𝐺, then
the weight (𝐷) of 𝐷 is defined as () ()

i

i
c D

W D w C
∈

= ∑ .

Thus, ‘Disjoint Clique Problem’ reduces to find a set 𝐷 of mutually
disjoint cliques such that (𝐷) is maximum among all possible (𝐷)’s. Let 𝐷∗ be
the set of disjoint cliques giving maximum value of (𝐷) then (𝐷∗) = {(𝐷): 𝐷 is
set of mutually disjoint cliques of 𝐺}.

Lemma-6

If (, 𝐶𝑗) and (𝐶𝑗, 𝐶𝑘) are any two 𝑒 −arcs of the network 𝑁 then (𝐶𝑖 , 𝐶𝑘)
is an 𝑒 −arc.

Proof: Let (, 𝐶𝑗) and (𝐶𝑗, 𝐶𝑘) be any two 𝑒 −arcs of the network 𝑁.
Therefore, it follows that 𝐶𝑖, 𝐶𝑗 are disjoint cliques as well as 𝐶𝑗, 𝑘

are
disjoint cliques. From Lemma-3 we have 𝑗 ≥ 𝐹𝑖𝑟𝑠𝑡𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡 (𝐶𝑖)>𝑖+1and𝑘≥
𝐹𝑖𝑟𝑠𝑡𝐷(𝐶𝑗) > 𝑗 + 1. That implies 𝑘 >

𝐹𝑖𝑟𝑠𝑡𝐷(𝐶𝑖) and hence 𝐶𝑖 is disjoint with 𝐶𝑘. That is, (𝐶𝑖,) is an 𝑒 −arc.

Let the set of arcs associated with the path 𝑃 be 𝑄. Now, if 𝑃∗ is the path
from 𝐶

0
to 𝐶𝛼+1

whose weight is maximum among all other paths from 𝐶
0
 to

𝐶𝛼+1
, then

(,) * (,)
(*) (,) max (,) : 1, 2,....,

i j i j

i j i j
c c Q c c Q

w p w C C w C C h
λ

λ
∈ ∈

  = = = 
  

∑ ∑ = max{𝑤(𝑃1),

𝑤(𝑃2), … , 𝑤(𝑃𝜆)},

where 𝑄∗ is the set of arcs associated with the paths 𝑃∗. Let 𝑄
1
∗

and 𝑄
2
∗ be the set of 𝑒 −arcs and 𝑑 −arcs of 𝑄∗, respectively. Hence,

 ()
1 2(,) * (,) * (,) *

(*) (,) (,) (,)
i j i j i j

i j i j i j
c c Q c c Q c c Q

w p w C C w C C w C w C Cβ
∈ ∈ ∈

= = + +∑ ∑ ∑

1 2 1(,) * (,) * (,) *
() () 0 () ()

i j i j i j

i i
c c Q c c Q c c Q

w C w C w C w Cβ β
∈ ∈ ∈

= + + = +∑ ∑ ∑

where 𝐶𝛽 is the last node associated with the last arc (, 𝐶𝛽) ∈𝑄∗.

Let the set of nodes associated with the 𝑒 −arcs of the path 𝑃∗ be 𝑃𝑉
∗, i.e.,

𝑃𝑉∗ is the set of nodes 𝐶𝑘’s which form the set of ordered pair arcs 𝑄
1
∗. Again,

as the weight of the arc (𝐶𝑖, 𝐶𝑗) is the weight of the node 𝐶𝑖, therefore, we
may write

*
(*) ()]

j v

i
C p

w P w C
∈

= ∑

Now, from Lemma-6 we have the following lemma.

Lemma-7. All the cliques of the interval graph 𝐺 on any path from any
node 𝐶𝑖 to any other node and 𝐶𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝛼 + 1 are disjoint.

The time complexity to find maximum weighted path from 𝐶
0
 to 𝐶𝛼+1

 is
proved in the following lemma.

Lemma-8.The maximum weighted path from 𝐶
0
 to 𝐶𝛼+1

 can be computed
in (𝛼2) time.

Proof.Using the algorithms of Ahuja et al. [19] we can compute the
maximum weighted path from 𝐶

0
 to 𝐶𝛼+1

 in 𝑂(𝛼2 + 𝛼√log 𝐶) time for a
network 𝑁 with a node and 𝑂(𝛼2) arcs and nonnegative integer arc costs
bounded by 𝐶.

There is another important result regarding weights of 𝑃∗ and weight of
𝐷∗.

Lemma-9. The weight of 𝑃∗ is equal to the weight of 𝐷∗ i.e., (𝑃∗) = (𝐷∗).

Proof. From the definition of (𝐷∗), we must have

(𝐷∗) = {(𝐷): 𝐷 is set of mutually disjoint cliques of 𝐺}.

Each set 𝐷 of maximal mutually disjoint cliques forms a path 𝑃 from 𝐶
0
 to

𝐶𝛼+1
. From definition of the weight of path and weight of maximal disjoint

cliques, we see that weight of any path 𝑃 is the weight of the corresponding
set of disjoint cliques 𝐷, i.e., 𝑤(𝑃) = 𝑊(𝐷). Hence, if 𝐷𝜆 corresponds to 𝑃𝜆,
(𝜆 = 1, 2, … ,ℎ) then 𝑊(𝐷𝜆) = 𝑤(𝑃𝜆), for all 𝜆 = 1, 2, … , ℎ. Therefore, 𝑤(𝑃∗)
= 𝑚𝑎𝑥{𝑤(𝑃

1
), 𝑤(𝑃

2
), … , 𝑤(𝑃ℎ)} = 𝑚𝑎𝑥{𝑊(𝐷

1
), 𝑊(𝐷

2
), … , 𝑊(𝐷ℎ)} = 𝑊(𝐷∗).

Hence the result.

THE ALGORITHM AND ITS COMPLEXITY

The major steps of the proposed sequential algorithm are listed below:

Algorithm DC

Input: An interval graph 𝐺 with its interval representation.

Output: A maximum weight disjoint clique’s 𝐷∗.

Step-1: Compute all maximal cliques 𝐶𝑖, 𝑖 = 1, 2,. . . , 𝛼 with 𝐶
0
= 𝜙 = 𝐶𝛼+1

Step-2: Construct a network 𝑁.

Step-3: Compute a maximum weighted path 𝑃𝑉
∗.

Step-4: Identify all the cliques from the path 𝑃𝑉
∗ and put them to the set

𝐷∗.

end FD

The complexity of Algorithm DC is given blow:

Theorem-2: The maximum disjoint cliques of an interval graph 𝐺 can be
computed in (𝑛2) time in sequential, where 𝑛 is the total number of vertices.

Proof: Step-1 of the Algorithm DC can be computed in (𝑛 + 𝛾) time,
where 𝛾 is the sum of cardinalities of all cliques which is known and to be (𝑛

Mondal.

 J Pur Appl Math Vol 2 No 3 December 20188

+ 𝑚) time, where 𝑚 is the number of edges of the graph [7]. Running time
of Step-2 is of (𝛼2) where 𝛼 = (𝑛) (Lemma-5). By Lemma-8, Step-3 takes (𝛼2)
time for implementation. Also, Step-4 takes (𝛼2) time.

Therefore, overall time complexity of the Algorithm DC is of (𝑛2). Hence
the theorem.

Parallel Implementation and its Complexity

The steps of parallel algorithm are exactly same as sequential algorithm.
The parallel implementation of each step of Algorithm DC is described
in this section.Using the algorithm of Pal et al. [24-26], we can compute
all maximal cliques of the interval graph, in parallel, 0(log)n n

p
γ+

+ time using 𝑝
processors on an EREW PRAM where 𝛾 is the output size and 𝑛 is the
number of vertices of the interval graph. Thus, Step-1 can be carried out
0(log)n n

p
γ+

+ time using 𝑝 processors on an EREW PRAM. The algorithm is
optimal if

log
nP

n
γ +

=  
 

 For an interval graph 𝛾 = (𝑛 + 𝑚) [20].A network 𝑁 corresponding
to an interval graph 𝐺 can be constructed in (1) time using (𝛼2) processors
on an EREW PRAM, where 𝛼 is the total number of maximal cliques of 𝐺.

Maximum weighted path in 𝑁 of 𝐺 can be computed in (log2 𝑛) time with
()3 3/20(log log / log)n n n processors on an EREW PRAM model and in 𝑂(log 𝑛)

time using 𝑂(𝑛3+𝜀), 𝜀 > 0 processors on a CREW model [21]. Hence, Step-3
and Step-4 requires same time.

Therefore, all the steps of Algorithm DC can be performed in 𝑂(log2𝑛)
time with ()3 3/20(log log / log)n n n processors on an EREW PRAM model and
in 𝑂(log 𝑛) time using 𝑂(𝑛3+𝜀), 𝜀 > 0 processors on a CREW model.

Thus, we have the following theorem:

Theorem-3. All disjoint cliques of an interval graph with 𝑛 vertices can be
compute in 𝑂(log2 𝑛) time with processors on an EREW PRAM model and
in 𝑂(log 𝑛) time using 𝑂(𝑛3+𝜀), 𝜀 > 0 processors on a CREW model.

CONCLUDING REMARKS

In this paper, an efficient algorithm is designed to solve the disjoint cliques
problem on interval graphs. The time complexity of the sequential algorithm
is (𝑛2) time where 𝑛 is the number of vertices of the graph. A parallel
algorithm is also designed. The time complexity of the parallel algorithm
is of (log2𝑛) time with ()3 3/20(log log / log)n n n processors on an EREW
PRAM model and (log 𝑛) time with (𝑛3+), 𝜀 > 0 processors on a CREW
PRAM model. It may be mentioned that the DAG approach has been used
to design this algorithm. It may be noted that our proposed algorithm is
not cost optimal but efficient. So, a new technique is required to solve this
problem in sequential as well as parallel. [22-26]

ACKNOWLEDGEMENT

The author thankful to the anonymous referees for their valuable remarks
which led to improvement of this paper I would like to acknowledge the
Department of Higher Education, Science & Technology and Biotechnology,
Govt. of West Bengal, India (245(Sanc.)/ST/P/S&T/16G-20/2017
dt.25/3/2018) for providing financial support during the project work. Also,
I would like to thank my Research Guides, the Principal, all my colleagues
and Research Scholar for their encouragement throughout this work.

REFERENCES

1.	 Golumbic MC. Algorithmic graph theory and perfect graphs, Academic
Press, New York.2000.

2.	 Mishra LN. On existence and behavior of solutions to some nonlinear
integral equations with Applications, Ph.D.Thesis, National Institute of
Technology, Silchar788010, Assam, India. 2017.

3.	 Mishra VN. Some problems on approximations of functions in banach
spaces, Ph.D. Thesis, Indian Institute of Technology, Roorkee 247 667,
Uttarakhand, India. 2007.

4.	 Mishra VN, Mishra LN. Trigonometric Approximation of Signals

(Functions) in Lp (p≥ 1)−norm. Int J Contemp Math Sciences.
2012;7:909- 18.

5.	 Mishra VN, Delen S, Cangul IN. Algebraic structure of graph operations
in terms of degree sequences. Int J Anal Appl. 2018; 16:809-21.

6.	 Mishra VN, Delen S, Cangul IN. Degree sequences of join and corona
products of graphs. Electronic J Math Anal Appl. 2019;7:5-13.

7.	 Mondal S, Bera D, Pal M, et al. An optimal parallel algorithm for
computing cut vertices and blocks on interval graphs. Intern J Computer
Math. 2000;75:59-70.

8.	 Jungck JR, Dick O, Dick AG. Computer assisted sequencing, interval
graphs and molecular evolution. Biosystem. 1982;15:259-73.

9.	 Fabri J. Automatic Storage Optimization. UMI Press Ann Arbor,
MI.1982.

10.	 Ohtsuki T, Mori H, Khu ES, et al. One dimensional logic gate assignment
and interval graph, IEEE Trans. Circuits and Systems.1979;26: 675-84.

11.	 Carlisle MC, Loyd EL. On the 𝑘 −coloring of intervals, LNCS,497,
ICCI’91.1991: 90-101.

12.	 Hashimoto A, Stevens J. Wire routing by optimizing channel assignment
within large apertures, Proc., 8th IEEE Design Automation Workshop.
1971:155-69.

13.	 Johnson DS. The NP-completeness column: an ongoing guide. Journal
of Algorithms.1985; 6:434-51.

14.	 Frank A. On chain and antichain families of partially ordered sets. J
Combinatorial Theory. 1980;29:176-84.

15.	 Gavril F, Yannakakis M. The maximum k-colorable subgraph problem
for chordal graphs. Information Processing Letters.1987;24:133-7.

16.	 Jansen K, Scheffier P, Woeginger G. The disjoint cliques problem,
Technical Report,Universitӓt Trier Mather Mathematk/Informatik,
Forschungsbematk/Informatik, Forschungsbericht Nr. 1992:92-23.

17.	 Mondal S, Pramanik T, Pal M. The diameter of an interval graph is twice
of its radius. World Academy of Science, Engineering and Technology.
2011;80:1363-8.

18.	 Gilmore PC, Hoffman AJ.A characterization of comparability graphs
and of interval graphs. Canad J Math. 1964;16:539-48.

19.	 Ahuja RK, Mehlhorn K, Orlin JB, et al. Faster algorithm for the shortest
path problem. J ACM. 1990;37:213-23.

20.	 Golumbic MC. Algorithmic graph theory and perfect graph. Academic
Press, New York. 2000.

21.	 Takoka T. A new upper bound on the complexity of the all-pair shortest
path problem, Information Processing Letters. 1992;43:195-9.

22.	 Mondal S, Pramanik T, Pal M. Minimum 2-tuple dominating set of an
interval graph. International Journal of Combinatorics. 2011;14.

23.	 Mondal S, Jana B, Pal M. Computation of the Inverse 1-center Location
Problem on the Weighted Interval Graphs. Int J Computing and
Mathematics. 2017.

24.	 Pal M, Bhattacharjee GP. Optimal sequential and parallel algorithm for
computing the diameter and the centre of an interval graphs. Intern J
Computer Maths. 1995;59:1-13.

25.	 Pal M, Bhattacharjee GP. The parallel algorithm for determining edge-
packing and efficient edge dominating sets in interval graphs. Parallel
Algorithms and Applications. 1995;7:193-207.

26.	 Pal M, Bhattacharjee GP. An optimal parallel algorithm for computing
all maximal cliques of an interval graph and its applications. J of
Institution of Engineers. 1995;76:29-33.

