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ABSTRACT

Using DAG approach,A sequential algorithm is presented to solve disjoint 
cliques problem on interval graph G which takes O(n^2) time where n is 
the number of vertices of the graph. For the same problem a O(log2n) time 
parallel algorithm is presented which takes ( )3 3/20( log log / log )n n n  processors on an 

EREW  PRAM model. Also, on a CREW model it takes  O(logn) time with 
O(n^(3+ε) ),ε>0 processors..
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An undirected graph G=(V,E) is an interval graph if the vertex set V can 
be put into one-to-one correspondence with a set I of intervals on the 

real line such that two vertices are adjacent in G iff their corresponding 
intervals in I have non-empty intersection. The set I is called an interval 
representation of the graph G and G is referred to as the intersection graph 
of I [1].

Interval graphs arise in the process of modeling real life situations, 
specially involving time dependencies or other restrictions that are linear in 
nature [2-7]. This graph models are convenient for analysis of electric circuits, 
VLSI design and layout routing process, scheduling, design of complex 
data structures, archeology, molecular biology, psychology, scheduling 
transportation etc. Recently Interval graphs have found applications in 
protein sequencing [8], macro substitution [9], circuit routing [10], file 
organization and job scheduling [11], resister allocation, routing of two 
points nets [12] and many others.

For a simple connected graph G=(V,E), a subset of V is said to be a clique 
in G if every pair of vertices of this subset is connected by an edge of E. 
A maximal clique is a clique to which no further vertex of the graph can 
be can be added so that it remains clique. A maximum clique is maximal 
clique cardinality. The cardinality of the maximum clique is called the clique 
number. If k be the total number of maximal cliques of the graph G and 
C={C_1,C_2,… C_k} be the set of all maximal cliques of the graph, then a 
subset D of C ( )D C⊆ is said to be a ‘set of pairwise disjoint cliques if every 
pair of cliques in D is disjoint.

Survey

For an arbitrary undirected graphs, disjoint union of cliques is easily seen 
to be NP-complete. As the disjoint union of the cliques problem is a ‘hard’ 
problem, so, we can explore its restrictions to special class of graphs and 
we hope to detect computationally better tractable cases. The motivation 
for this approach comes from the NP-completeness table of Johnson [13], 
where the complexity of ten different graph problems restricted to a series of 
graph classes is given. Two problems in the table of Johnson are the above 
mentioned ‘clique’ and ‘partition into cliques’ problem.

The problem ‘disjoint union of cliques’ was analyzed first by Frank 
[14]. He considered comparability graphs and its complement graphs (co-
comparability graphs) and given an algorithm for both graph classes with 
complexity O(a b n2),where a is the cardinality of a maximum clique and b is 
the cardinality of a maximum independent set.  Gavril et al. [15] proposed 
a slightly better algorithm which needs O (Dn2) time steps for comparibility 
graphs and O (n3+ b n2 log n) for co-comparability graphs. In [16], for subclass 
like the interval graphs, bipartite graphs and co graphs with n vertices, Jansen 
et al. have designed an algorithm for finding D paiwise disjoint union cliques 

in O(Dn2), O(m√n)  and O(n2) time respectively.

In this paper, a sequential algorithm and a parallel algorithm are presented 
to find a set of pairwise disjoint cliques in the interval graph with maximum 
overall number of vertices. The time complexity of the proposed sequential 
algorithm is O(n2) whereas the parallel algorithm takes O(log2n) time with 

( )3 3/20( log log / log )n n n  processors on an EREW PRAM model and on a CREW 
model it takes  O(log n) time with O(n3+ε),ε>0 processors, where n is the 
number of vertices of the graph.

Data Structure and Preliminaries

Let I= {I
1
, I

2
,… I

n
}, be the interval representation of the interval graph 

G= (V,E), where a
r
 is the left endpoint and b

r
 is the right endpoint of the 

interval I
r
=[a

r
,b

r
] for all r=1,2,…  n. Without loss of generality, we assume 

the following:

1.	 the intervals in I are indexed by increasing right endpoint, i.e., 
b_1<b_2<⋯<b_n,

2.	 the intervals are closed, i.e., contains both of its endpoints and that 
no two intervals share a common endpoint,

3.	 vertices of the interval graph and the intervals on the real line are 
one and the same thing,

4.	 the interval graph G is connected, and the list of sorted end points 
is given.

Figure 1) An interval graph and its interval representation

Considering the location of 2n endpoints of the n intervals on the real 
line in increasing order and the array e= {e(1),e(2),.  .  .  , e(2n)} is formed. For 
each element e (i) of e, two fields e (i).ver and e (i).type are defined as follows:

e(i).ver=k, if e(i) is the end point of the interval I
k
.

e(i).type={a, if the end point e (i) is left end point 

           ={b, if the end point e (i) is right end point.



Mondal.

 J Pur Appl Math Vol 2 No 3 December 20186

Then, we define a new field e (i).max to the array e as

e (i).max=e(i).ver for i=1.

( )
( 4).max, ( 1). ( ).

.
( ). , ( 1). ( ). .

e i if e i ver e i ver
e i max

e i ver if e i ver e i ver
− − ≥

=  − <
 Thus, the fields e(i).max 

computes the maximum vertex between the end points e(1) and e(i).

For the graph of Figure 1, the array e is shown in the Table 1.

Lemma-1 

All maximal cliques of an interval graph can be computed sequentially in O(n+γ) 
time, where γ is the output size and in parallel in 0( log )n n

p
γ+

+

 

time using p processors 
on an EREW PRAM [17]. 

One more important characterization of the interval graph with respect to 
cliques is given by Gilmore and Hoffman [18]. It is stated as follows:

Lemma-2 

A graph G is an interval graph if and only if the maximal cliques of G can be 
linearly ordered in such a way that for every vertex v of G, the maximal cliques 
containing v occur consecutively [18]. 

Using Lemma-1, we can determine all maximal cliques. Let the total 
number of maximal cliques thus found be α. As the graph G is an interval 
graph, these α maximal cliques can be ordered by Lemma-2. Let the set 
of these ordered maximal cliques be {C

1
, C

2
,…Cα}. We also consider two 

fictitious cliques C
0 
and C 

(α+1)
 and take them as null set. Thus the ordered 

maximal cliques becomes {Cα,C1
,C

2
,… Cα, Cα+1

}.

Another array, denoted by max (C
i
), is defined as

  max (C
i
 ) =max{v: v∈C_i}.  

This array gives the maximum vertex that the clique C
i
 contains.

From Lemma-2, it follows that if u∈C
i
 and u∈C

k
 where I ≤ k, then u∈C

_j
 

for all I ≤ j ≤ k. If p(u) is the largest subscript of the maximal cliques in which 
u belongs, then we call the clique C

p(u)
 as end clique of u, i.e., if p(u)=max∈{j: 

u∈C
j
} then the end clique of u is C

p(u)
. We note that p(u) forms an array for all 

u∈V, and also we note that if j>p(u) then u ∉C
j
.

Next, we define another important array First Disjoint (C
i
), i=1,2,…,α is 

defined as follows:

FirstDisjoint (C
i
) =p(max(C

i
 ) )+1.

From this definition and the ordering of maximal cliques done by 
Lemma-2, it follows that if j=FirstDisjoint (C

i
) then all the cliques C

j
,C

(j+1)
,…,Cα 

are disjoint with C
i
 and C

j
 is the first disjoint clique of the clique C

i
.

For any two consecutive cliques we have the following lemma.

Lemma-3

Any two consecutive cliques 𝐶𝑖 and 𝐶𝑖+1
 are non-disjoint cliques in 𝐺.

Proof: If possible let 𝐶𝑗 and 𝐶𝑗+1
 are disjoint cliques in 𝐺. Then from the 

ordering of maximal cliques, it is clear that 𝐶𝑗 is disjoint with all cliques 
𝐶𝑗+1

, 𝐶𝑗+2
, … , 𝐶𝛼. From Lemma-2, we have

for any 𝑖 ≤ 𝑗, if 𝑢 ∈ 𝐶𝑖 then the end clique of 𝑢 cannot be 𝐶𝑘 where 𝑘 ≥ 𝑗 + 
1, since in that case 𝑢 must belongs to both 𝐶𝑗 and 𝐶𝑗+1

 contradicting the fact 
that 𝐶𝑗 and 𝐶𝑗+1

 are disjoint. As it

is true for any 𝑢 ∈ 𝐶𝑖, we have 𝐶𝑖is disjoint with 𝐶𝑘 for any 𝑘 ≥ 𝑗 + 1. 
Hence, any one among

𝐶
1
, 𝐶

2
, … 𝐶𝑗 is disjoint with any 𝐶𝑗+1

, 𝐶𝑗+2
, … , 𝐶𝛼. This means the graph 𝐺 

is disconnected

which is not true. Hence, any two consecutive cliques 𝐶𝑖 and 𝐶𝑖+1
 are non-

disjoint cliques in 𝐺.

This proves the lemma. 

The array 𝐹𝑖𝑟𝑠𝑡𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡 plays an important role for construction of the 
network 𝑁. An algorithm to compute this array is presented below:

Algorithm FD

Input: The array (𝑖), 𝑖 = 1, 2, … , 2𝑛 for interval graph.

Output: The array 𝐹𝑖𝑟𝑠𝑡𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡.

Step-1: Compute all maximal cliques  , 𝑖 = 1, 2,. . . , 𝛼.

Step-2: Compute all 𝑚𝑎𝑥 (
 
) , 𝑖 = 1, 2, . . . , 𝛼.

Step-3: Compute all (𝑖), 𝑖 = 1, 2, . . . , 𝑛.

Step-4: For all 𝑖 = 1, 2, . . . , 𝛼 calculate

𝐹𝑖𝑟𝑠𝑡𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡 (
 
) = ((𝐶

 
)) + 1. end FD

The complexity of Algorithm FD is given blow:

Theorem-1: Algorithm FD can be computed in (𝑛2) time in sequential.

Proof. Step-1 can be computed in (𝑛 + 𝛾) time, where 𝛾 is the sum of 
cardinalities of all cliques which is known and to be (𝑛 + 𝑚) time, where 𝑚 
is the number of edges of the graph[7]. In step-2, for each 𝑖 = 1, 2,. .. , 𝛼, the 
array 𝑚𝑎𝑥 ( ) takes (|𝐶𝑖 |) time, i.e., (𝑛) time. Hence, for all cliques it takes 
(𝛼 𝑛) time, i.e., (𝑛2) time as 𝛼 is of (𝑛). Similarly, Step-3 and Step-4 takes 
(𝑛2) time. Therefore, overall time complexity of the Algorithm FD is of (𝑛2).
Hence the theorem.

Using the array 𝐹𝑖𝑟𝑠𝑡𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡 anyone can construct the network 𝑁, 
called as Directed Acyclic

Graph (DAG).

A Network and its Properties

A Network

A network 𝑁 consists of a finite set of nodes 𝑉𝑁 = {𝐴
0
, 𝐴

1
, … 𝐴𝑚} together 

with a set of arcs

𝐸𝑁 of all ordered disjoint pairs (𝐴𝑖,  ), 𝑗 > 𝑖; 𝑖, 𝑗 = 0, 1, … , 𝑚. The network 
𝑁 has also a

special return arc (𝐴𝑚,
 𝐴

0
) from the sink 𝐴𝑚 to the source 𝐴

0
. With each arc 

(𝐴𝑖,) ∈ 𝐸𝑁 of the network 𝑁, a non-negative weight 𝑤(𝐴𝑖,𝐴𝑗 ) is associated. A 
path having maximum total weight among all paths from 𝐴0 to 𝐴𝑚 is called 
the maximum weight path.

Let 𝑇 be the set of all paths from the source 𝐴
0 
to the sink 𝐴𝑚 in 𝑁. Then 

𝑇 is a finite set. For any path 𝑃 ∈ 𝑇 let the sum of the weights for the arcs 
associated with the path 𝑃 is (𝑃).

The maximum weighted path problem for a network 𝑁 is the problem of 
finding maximum weighted path, i.e., it is a problem of finding a path 𝑃∗ 
from 𝐴

0
 to 𝐴𝑚 in the network 𝑁 for which the total weight is maximum. So, 

it is a problem of finding a path 𝑃∗∈ 𝑇 such that

𝑤(𝑃∗) = 𝑚𝑎𝑥{𝑤(𝑃) ∶ 𝑃 ∈ 𝑇}.

Construction of the Network

We now supposed to construct a network 𝑁 so that a maximum weighted 
path of it leads to the solution of pairwise disjoint cliques problem in the 
interval graph 𝐺 Figure2.

Table 1.

To find the disjoint cliques on interval graphs, we have to first compute all maximal cliques and the time complexity of which given in the following lemma.

    e(i). e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20

ver 2 1 3 1 2 5 3 4 4 7 6 5 6 8 9 10 7 8 9 10

typ a a a b b a b a b a a b b a a a b b b b

ma 2 2 3 3 3 5 5 5 5 7 7 7 7 8 9 10 10 10 10 10
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Figure 2) The Network N constructed from the graph of Figure 1

The nodes of the network are taken as the set of all maximal cliques 𝑉𝑁 = 
{𝐶

0
, 𝐶

1
, … 𝐶𝛼 , 𝐶𝛼+1

} and the set 𝐸𝑁 of arcs is formed by 𝑒 −arcs, 𝑑 −arcs and 
special return arc defined respectively as

i) all ordered disjoint pairs (𝐶𝑖 , 𝐶𝑗 ), 𝑗 > 𝑖, 𝑖, 𝑗 = 0, 1, 2, … 𝛼 + 1;

ii) all ordered non-disjoint pairs (𝐶𝑖−1
, 𝐶𝑖 ), 𝑖 = 1, 2, … , 𝛼; and

iii) the ordered pair (𝐶𝛼+1
, 𝐶

0
).

As from Lemma-3, the consecutive cliques are always non-disjoint, the 
weight of all 𝑑 −arcs are taken zero. The weight of all 𝑒 −arcs are taken as 
follows:

i) if the graph 𝐺 is non-weighted then

𝑤(𝐶𝑖 , 𝐶𝑗 ) = 𝑤(𝐶𝑖 ) = |𝐶𝑖 |,

i.e., weight of the arc (𝐶𝑖,  
) is equal to the cardinality of the clique 𝐶𝑖; and

ii) if the graph 𝐺 is weighted then ( , ) ( ) ( )
i

i j i
u C

w C C w C w u
∈

= = ∑ ,

i.e., weight of the arc (𝐶𝑖,  ) is equal to the weight of the node 𝐶𝑖 which is 
the sum of the weights associated with each vertex of the maximal clique 𝐶𝑖.

In 𝑁, let the total number of paths from the source 𝐶
0
 to the sink 𝐶𝛼+1

be 
ℎ, and the set of all such paths be 𝑇 = {𝑃

1
, 𝑃

2
, …, 𝑃ℎ}. Then for any path 𝑃𝜆 ∈ 

𝑇 we have ( , )
( ) ( , )

i j

i j
c c P

w P w C C
λ

λ
∈

= ∑ The maximum weighted path problem is the problem 
of finding the path 𝑃∗ ∈ 𝑇 such that (𝑃∗) = {(𝑃) ∶ 𝑃 ∈ 𝑇} = {(𝑃

1
), (𝑃

2
), . , 𝑤(𝑃ℎ)}.

Next, we shall discuss about the total number of nodes and total 
computational time.

Lemma-4 The total number of nodes in 𝑁 is 𝛼 + 2 and the total number 
of arcs in 𝑁 is of (𝛼2) where 𝛼 < 𝑛.

Proof: From definition and construction of 𝑁 it is clear that the total 
number of nodes 𝛼 + 2. The Number of 𝑒 −arcs starting from each node 𝐶𝑖 
is at most 𝛼. As there are 𝛼 + 2 nodes in 𝑁 therefore, the total number of 
arcs in 𝑁 is of (𝛼2). 

Lemma-5

If all the maximal cliques are given then the time taken to construct the 
network 𝑁 is of (𝛼2).

Proof : It follows directly from the Lemma-4. 

If 𝐷 be the set of maximal mutually disjoint cliques of the graph 𝐺, then 
the weight (𝐷) of 𝐷 is defined as ( ) ( )

i

i
c D

W D w C
∈

= ∑ .

Thus, ‘Disjoint Clique Problem’ reduces to find a set 𝐷 of mutually 
disjoint cliques such that (𝐷) is maximum among all possible (𝐷)’s. Let 𝐷∗ be 
the set of disjoint cliques giving maximum value of (𝐷) then (𝐷∗) = {(𝐷): 𝐷 is 
set of mutually disjoint cliques of 𝐺}.

Lemma-6

If ( , 𝐶𝑗 ) and (𝐶𝑗, 𝐶𝑘 ) are any two 𝑒 −arcs of the network 𝑁 then (𝐶𝑖 , 𝐶𝑘 ) 
is an 𝑒 −arc.

Proof: Let ( , 𝐶𝑗 ) and (𝐶𝑗, 𝐶𝑘 ) be any two 𝑒 −arcs of the network 𝑁. 
Therefore, it follows that 𝐶𝑖, 𝐶𝑗 are disjoint cliques as well as 𝐶𝑗, 𝑘 

are 
disjoint cliques. From Lemma-3 we have 𝑗 ≥ 𝐹𝑖𝑟𝑠𝑡𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡 (𝐶𝑖)>𝑖+1and𝑘≥ 
𝐹𝑖𝑟𝑠𝑡𝐷(𝐶𝑗) > 𝑗 + 1. That implies 𝑘 >

𝐹𝑖𝑟𝑠𝑡𝐷(𝐶𝑖 ) and hence 𝐶𝑖 is disjoint with 𝐶𝑘. That is, (𝐶𝑖,  ) is an 𝑒 −arc.

Let the set of arcs associated with the path 𝑃 be 𝑄. Now, if 𝑃∗ is the path 
from 𝐶

0 
to 𝐶𝛼+1 

whose weight is maximum among all other paths from 𝐶
0
 to 

𝐶𝛼+1
, then

( , ) * ( , )
( *) ( , ) max ( , ) : 1, 2,....,

i j i j

i j i j
c c Q c c Q

w p w C C w C C h
λ

λ
∈ ∈

  = = = 
  

∑ ∑ = max{𝑤(𝑃1), 

𝑤(𝑃2), … , 𝑤(𝑃𝜆)},

where 𝑄∗ is the set of arcs associated with the paths 𝑃∗. Let 𝑄
1
∗ 

and 𝑄
2
∗ be the set of 𝑒 −arcs and 𝑑 −arcs of 𝑄∗, respectively. Hence,

 ( )
1 2( , ) * ( , ) * ( , ) *

( *) ( , ) ( , ) ( , )
i j i j i j

i j i j i j
c c Q c c Q c c Q

w p w C C w C C w C w C Cβ
∈ ∈ ∈

= = + +∑ ∑ ∑

1 2 1( , ) * ( , ) * ( , ) *
( ) ( ) 0 ( ) ( )

i j i j i j

i i
c c Q c c Q c c Q

w C w C w C w Cβ β
∈ ∈ ∈

= + + = +∑ ∑ ∑

where 𝐶𝛽 is the last node associated with the last arc ( , 𝐶𝛽 ) ∈𝑄∗.

Let the set of nodes associated with the 𝑒 −arcs of the path 𝑃∗ be 𝑃𝑉
∗, i.e., 

𝑃𝑉∗ is the set of nodes 𝐶𝑘’s which form the set of ordered pair arcs 𝑄
1
∗. Again, 

as the weight of the arc (𝐶𝑖, 𝐶𝑗) is the weight of the node 𝐶𝑖, therefore, we 
may write

*
( *) ( )]

j v

i
C p

w P w C
∈

= ∑

Now, from Lemma-6 we have the following lemma.

Lemma-7. All the cliques of the interval graph 𝐺 on any path from any 
node 𝐶𝑖 to any other node and 𝐶𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝛼 + 1 are disjoint.

The time complexity to find maximum weighted path from 𝐶
0
 to 𝐶𝛼+1

 is 
proved in the following lemma.

Lemma-8.The maximum weighted path from 𝐶
0
 to 𝐶𝛼+1

 can be computed 
in (𝛼2) time.

Proof.Using the algorithms of Ahuja et al. [19] we can compute the 
maximum weighted path from 𝐶

0
 to 𝐶𝛼+1

 in 𝑂(𝛼2 + 𝛼√log 𝐶) time for a 
network 𝑁 with a node and 𝑂(𝛼2) arcs and nonnegative integer arc costs 
bounded by 𝐶. 

There is another important result regarding weights of 𝑃∗ and weight of 
𝐷∗.

Lemma-9. The weight of 𝑃∗ is equal to the weight of 𝐷∗ i.e., (𝑃∗) = (𝐷∗).

Proof. From the definition of (𝐷∗), we must have

(𝐷∗) = {(𝐷): 𝐷 is set of mutually disjoint cliques of 𝐺}.

Each set 𝐷 of maximal mutually disjoint cliques forms a path 𝑃 from 𝐶
0
 to 

𝐶𝛼+1
. From definition of the weight of path and weight of maximal disjoint 

cliques, we see that weight of any path 𝑃 is the weight of the corresponding 
set of disjoint cliques 𝐷, i.e., 𝑤(𝑃) = 𝑊(𝐷). Hence, if 𝐷𝜆 corresponds to 𝑃𝜆, 
(𝜆 = 1, 2, … ,ℎ) then 𝑊(𝐷𝜆) = 𝑤(𝑃𝜆), for all 𝜆 = 1, 2, … , ℎ. Therefore, 𝑤(𝑃∗) 
= 𝑚𝑎𝑥{𝑤(𝑃

1
), 𝑤(𝑃

2
), … , 𝑤(𝑃ℎ)} = 𝑚𝑎𝑥{𝑊(𝐷

1
), 𝑊(𝐷

2
), … , 𝑊(𝐷ℎ)} = 𝑊(𝐷∗).

Hence the result. 

THE ALGORITHM AND ITS COMPLEXITY

The major steps of the proposed sequential algorithm are listed below:

Algorithm DC

Input: An interval graph 𝐺 with its interval representation.

Output: A maximum weight disjoint clique’s 𝐷∗.

Step-1: Compute all maximal cliques 𝐶𝑖, 𝑖 = 1, 2,. . . , 𝛼 with 𝐶
0 
= 𝜙 = 𝐶𝛼+1

Step-2: Construct a network 𝑁.

Step-3: Compute a maximum weighted path 𝑃𝑉
∗.

Step-4: Identify all the cliques from the path 𝑃𝑉
∗ and put them to the set 

𝐷∗. 

end FD

The complexity of Algorithm DC is given blow:

Theorem-2: The maximum disjoint cliques of an interval graph 𝐺 can be 
computed in (𝑛2) time in sequential, where 𝑛 is the total number of vertices.

Proof: Step-1 of the Algorithm DC can be computed in (𝑛 + 𝛾) time, 
where 𝛾 is the sum of cardinalities of all cliques which is known and to be (𝑛 
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+ 𝑚) time, where 𝑚 is the number of edges of the graph [7]. Running time 
of Step-2 is of (𝛼2) where 𝛼 = (𝑛) (Lemma-5). By Lemma-8, Step-3 takes (𝛼2) 
time for implementation. Also, Step-4 takes (𝛼2) time.

Therefore, overall time complexity of the Algorithm DC is of (𝑛2). Hence 
the theorem.

Parallel Implementation and its Complexity

The steps of parallel algorithm are exactly same as sequential algorithm. 
The parallel implementation of each step of Algorithm DC is described 
in this section.Using the algorithm of Pal et al. [24-26], we can compute 
all maximal cliques of the interval graph, in parallel, 0( log )n n

p
γ+

+ time using 𝑝 
processors on an EREW PRAM where 𝛾 is the output size and 𝑛 is the 
number of vertices of the interval graph. Thus, Step-1 can be carried out 
0( log )n n

p
γ+

+ time using 𝑝 processors on an EREW PRAM. The algorithm is 
optimal if

log
nP

n
γ +

=  
 

 For an interval graph 𝛾 = (𝑛 + 𝑚) [20].A network 𝑁 corresponding 
to an interval graph 𝐺 can be constructed in (1) time using (𝛼2) processors 
on an EREW PRAM, where 𝛼 is the total number of maximal cliques of 𝐺.

Maximum weighted path in 𝑁 of 𝐺 can be computed in (log2 𝑛) time with 
( )3 3/20( log log / log )n n n processors on an EREW PRAM model and in 𝑂(log 𝑛) 

time using 𝑂(𝑛3+𝜀 ), 𝜀 > 0 processors on a CREW model [21]. Hence, Step-3 
and Step-4 requires same time.

Therefore, all the steps of Algorithm DC can be performed in 𝑂(log2𝑛) 
time with ( )3 3/20( log log / log )n n n processors on an EREW PRAM model and 
in 𝑂(log 𝑛) time using 𝑂(𝑛3+𝜀 ), 𝜀 > 0 processors on a CREW model.

Thus, we have the following theorem:

Theorem-3. All disjoint cliques of an interval graph with 𝑛 vertices can be 
compute in 𝑂(log2 𝑛) time with processors on an EREW PRAM model and 
in 𝑂(log 𝑛) time using 𝑂(𝑛3+𝜀 ), 𝜀 > 0 processors on a CREW model.

CONCLUDING REMARKS

In this paper, an efficient algorithm is designed to solve the disjoint cliques 
problem on interval graphs. The time complexity of the sequential algorithm 
is (𝑛2) time where 𝑛 is the number of vertices of the graph. A parallel 
algorithm is also designed. The time complexity of the parallel algorithm 
is of (log2𝑛) time with ( )3 3/20( log log / log )n n n processors on an EREW 
PRAM model and (log 𝑛) time with (𝑛3+ ), 𝜀 > 0 processors on a CREW 
PRAM model. It may be mentioned that the DAG approach has been used 
to design this algorithm. It may be noted that our proposed algorithm is 
not cost optimal but efficient. So, a new technique is required to solve this 
problem in sequential as well as parallel. [22-26]
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